Degenerations of Complex Dynamical Systems Ii: Analytic and Algebraic Stability
نویسنده
چکیده
We study pairs (f,Γ) consisting of a non-Archimedean rational function f and a finite set of vertices Γ in the Berkovich projective line, under a certain stability hypothesis. We prove that stability can always be attained by enlarging the vertex set Γ. As a byproduct, we deduce that meromorphic maps preserving the fibers of a rationally-fibered complex surface are algebraically stable after a proper modification. The first article in this series examined the limit of the equilibrium measures for a degenerating 1-parameter family of rational functions on the Riemann sphere. Here we construct a convergent countable-state Markov chain that computes the limit measure. A classification of the periodic Fatou components for non-Archimedean rational functions, due to Rivera-Letelier, plays a key role in the proofs of our main theorems. The appendix contains a proof of this classification for all tame rational functions.
منابع مشابه
Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملDetermination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method
Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...
متن کاملStudies on Nickel(II)-Pyridoxamine-Imidazole Containing Mixed Ligand Complex Systems
The stability constants of species present in the systems Ni(II)-pyridoxamine(pym)(A) and Ni(II)-pyridoxamine(pym)(A)-imidazole containing ligands(B) [B = imidazole(him), benzimidazole(bim), histamine(hist) and L-histidine(his)] have been determined pH-metrically using the MINIQUAD computer program. The existence of the species NiAH, NiA and NiA2 was proven for the Ni(II)-pym(A)...
متن کاملDynamical behavior and synchronization of hyperchaotic complex T-system
In this paper, we introduce a new hyperchaotic complex T-system. This system has complex nonlinear behavior which we study its dynamical properties including invariance, equilibria and their stability, Lyapunov exponents, bifurcation, chaotic behavior and chaotic attractors as well as necessary conditions for this system to generate chaos. We discuss the synchronization with certain and uncerta...
متن کاملThe Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion
In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and ...
متن کامل